Payel Choudhury, Biswanath Bhunia



Lipases are a class of enzymes which catalyze the hydrolysis of long chain triglycerides. At present, microbial lipases are achieving much awareness with the fast progress of enzyme technology.

Lipases signify the most important group of biocatalysts for industrial applications. The present review defines various industrial applications of microbial lipases in fat and oleo-chemical industry, detergent industry, production of biodegradable polymer, food processing, flavor development ,medical and pharmaceutical, pulp and paper industry, biosensors, waste treatment, cosmetics and perfumery and bio diesel.


Enzyme, Lipase, application, biocatalyst, industry.

Full Text:

Full text in pdf


Andualema, B., Gessesse, A. (2012). Microbial Lipases and Their Industrial Applications: Review. Biotechnology, 11.

Ansorge-Schumacher, M.B., Thum, O. (2013). Immobilised lipases in the cosmetics industry. Chemical Society Reviews, 42, 6475-6490.

Aravindan, R., Anbumathi, P., Viruthagiri, T. (2007). Lipase applications in food industry. Indian Journal of Biotechnology, 6, 141-158.

August, P. (1972). Lipase containing defatting creams. West Germany Patent, 2.

Bailey, J., Ollis, D. (1986). Applied enzyme catalysis. Biochemical engineering fundamentals, 2, 157-227.

Braz J. Demuner, Nei Pereira Junior, Antunes., A.M.S. (2011). Technology Prospecting on Enzymes for the Pulp and Paper Industry Journal of Technology Management & Innovation, 6.

Burgess, J.E., Pletschke, B.I. (2008). Hydrolytic enzymes in sewage sludge treatment: A mini-review. Water Sa, 34, 343-349.

Cho, S.S., Park da, J., Simkhada, J.R., Hong, J.H., Sohng, J.K., Lee, O.H., Yoo, J.C. (2012). A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp. CS326. Bioprocess Biosyst Eng, 35, 227-34.

Biopharm Journal. 2015, 1(2), xx-xx/20xx ISSN: 2454-1397

Fan, X., Niehus, X., Sandoval, G. (2012). Lipases as biocatalyst for biodiesel production. Methods Mol Biol, 861, 471-83.

Gandhi, N.N. (1997). Applications of lipase. Journal of the American Oil Chemists' Society, 74, 621-634.

Ghosh, P., Saxena, R., Gupta, R., Yadav, R., Davidson, S. (1996). Microbial lipases: production and applications. Science progress, 79, 119-158.

Gillis, A. 1988. Research discovers new roles for lipases, Amer Oil Chemists Soc 1608 Broadmoor Drive, Champaign, IL 61821-0489.

Gopinath, S.C.B., Anbu, P., Lakshmipriya, T., Hilda, A. (2013). Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry. BioMed Research International, 2013, 10.

Grbavcic, S., Bezbradica, D., Izrael-Zivkovic, L., Avramovic, N., Milosavic, N., Karadzic, I., Knezevic-Jugovic, Z. (2011). Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour Technol, 102, 11226-33.

Grbavčić, S.Ž., Dimitrijević-Branković, S.I., Bezbradica, D.I., Šiler-Marinković, S.S., Knežević, Z.D. (2007). Effect of fermentation conditions on lipase production by Candida utilis. Journal of the Serbian Chemical Society, 72, 757-765.

Gunstone, F.D., Padley, F.B. (1997). Lipid technologies and applications. CRC press.

Gupta, R., Gupta, N., Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol, 64, 763-81.

Gurung, N., Ray, S., Bose, S., Rai, V. (2013). A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed Research International, 2013, 18.

Hasan, F., Shah, A.A., Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235-251.

Jeon, J.H., Kim, J.T., Kim, Y.J., Kim, H.K., Lee, H.S., Kang, S.G., Kim, S.J., Lee, J.H. (2009). Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol, 81, 865-74.

Khan, A.A., Wang, R.-F., Cao, W.-W., Doerge, D.R., Wennerstrom, D., Cerniglia, C.E. (2001). Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Applied and Environmental Microbiology, 67, 3577-3585.

Khersonsky, O., Tawfik, D.S. (2010). Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem, 79, 471-505.

Lenting, H.B.M., Misset, O., Labout, J.J.M., Bolle, R., Oomen, A.J.A.M., Mulleners, L.J.S.M. 1993. Lipases: Structure, Function and Protein Engineering. Elsinore.

Linko, Y., Lamsa, M., Wu, X., Uosukainen, E., Seppala, J., Linko, P. (1998). Biodegradable products by lipase biocatalysis. J Biotechnol, 66, 41–50.

Margesin, R., Labbe, D., Schinner, F., Greer, C., Whyte, L. (2003). Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Applied and Environmental Microbiology, 69, 3085-3092.

Metzger, J., Bornscheuer, U. (2006). Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Applied Microbiology and Biotechnology, 71, 13-22.

Mobarak-Qamsari, E., Kasra-Kermanshahi, R., Moosavi-Nejad, Z. (2011). Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran J Microbiol, 3, 92-8.

Biopharm Journal. 2015, 1(2), xx-xx/20xx ISSN: 2454-1397


Pandey, A., Benjamin, S., Soccol, C.R., Nigam, P., Krieger, N., Soccol, V.T. (1999). The realm of microbial lipases in biotechnology. Biotechnology and applied biochemistry, 29, 119-131.

Pinkart, H.C., Wolfram, J.W., Rogers, R., White, D.C. (1996). Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Applied and Environmental Microbiology, 62, 1129-1132.

Rajendran, A., Palanisamy, A., Thangavelu, V. (2008). Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese Journal of Biotechnology, 24, 436-444.

Ramani, K., Sekaran, G. (2012). Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells. Bioprocess and biosystems engineering, 35, 885-896.

Ray, A. (2012a). Application of Lipase in Industry Asian J. Pharm. Tech, 2, 33-37.

Ray, A. (2012b). Application of lipase in industry. Asian Journal of Pharmacy and Technology, 2, 33-37.

Saxena R.K., Ghosh P.K., Gupta R., Davidson W.S., Bradoo S., R., G. (1999). Microbial lipases: Potential biocatalysts for the future industry. 77, 101–115.

Sharma, R., Chisti, Y., Banerjee, U.C. (2001). Production, purification, characterization, and applications of lipases. Biotechnol Adv, 19, 627-62.

Sharma, S., Kanwar, S.S. (2014). Organic Solvent Tolerant Lipases and Applications. The Scientific World Journal, 2014, 15.

Sumner, C., Krause, S., Sabot, A., Turner, K., McNeil, C.J. (2001). Biosensor based on enzyme-catalysed degradation of thin polymer films. Biosensors and Bioelectronics, 16, 709-714.

Thierry, M. (2003). Application of hydrolases to the enzymatic synthesis of cosmetic Ingredients. Scientific Study & Research, 4, 39.

Verma, N., Thakur, S., Bhatt, A.K. (2012). Microbial Lipases: Industrial Applications and Properties International Research Journal of Biological Sciences, 1, 88-92.


  • There are currently no refbacks.

Copyright © 2015 BIOPHARM JOURNAL  - ISSN 2454-1397 & Powered by Sona Nfinity